

Online Seminar / Live Stream

Hydrogen-based Reduction of Iron Ores

6 - 7 October 2020 8.30 a.m. till 1 p.m. CET

CONTENT

- · CO2-emissions and their mitigation in the steel industry
- · Hydrogen production and importance for the economic sector
- Thermodynamics and kinetics of hydrogen-based reduction
- Injection of carbon-hydrogen carriers into the blast furnace
- History, developments and processes of direct reduction
- Iron ores for hydrogen-based direct reduction
- · Hydrogen-based direct reduction with Midrex
- · Hydrogen-based direct reduction with HyL/Energiron
- Hydrogen-based direct reduction with Circored
- Hydrogen-based direct reduction for iron ore fines

ORGANISATION

Steel Academy / Steel Institute VDEh Sohnstraße 65 40237 Düsseldorf, Germany Fon +49 211 6707-458 • Fax -655 info@steel-academy.com / www.steel-academy.com

TARGET GROUP

- Supervisors responsible for decisions on metallurgy, energy, strategy, environmental protection
- Analysts, stake holders and decision makers in energy transition, low carbon economy and decarbonization
- Staffs on blast furnace, R&D and raw materials

The seminar places the emphasis on a wide overview on the subject: the first day covers the fundamentals and conditions for hydrogen-based iron ore reduction. The lectures of the second day round off the programme with practical approaches on different industrial plant concepts.

REGISTRATION FEE

€ 750,00* // € 850,00 VAT-free

* for employees of member companies and individual members of the Steel Institute VDEh. Scientific staff of universities gets a 50 % off. Also 50 % discount for each additional participant from the same company.

CHAIRMEN

Dr.-Ing. Hans Bodo Lüngen / Prof. Dr.-Ing. Johannes Schenk

ONLINE SEMINAR ORGANISATION

Technical quality:

The Steel Academy attaches great importance to the audiovisual quality of its online seminars. This seminar will be broadcast as a live-stream from Steel Academy's film studio in Dusseldorf – with high quality camera, microphone and lighting. In the picture will be shown the speaker and his presentation. A moderator leads through the lectures.

Online seminar - how does it work?

- after seminar registration you receive an e-mail with a link and a pass word
- at seminar's starting the link leads you to the streaming platform vimeo.com
- you log in with the pass word
- you need just a PC / laptop / tablet / mobile phone
- \Rightarrow no special program or software is required.

Schedule:

2 days, 4,5 hours in the morning 8.30 a.m. till 1 p.m.

Seminar handouts:

Before seminar's starting the participant can download the presentations as a pdf.

PROGRAMME

Tuesday, 6th of October 2020

Chapter "Fundamentals and Conditions"

- 08:30 Introduction to the seminar P. Schmieding, H.B. Lüngen
- 08:35 CO₂-emissions and their mitigation in the steel industry Hans Bodo Lüngen Requirements of the EC / CO₂-emissions of steelmaking routes in use / CO₂-mitigation of the European steel industry 1990-2015 / Current projects in Europe to reduce CO₂ in steelmaking
- 09:00 History, developments, processes of direct reduction Hans Bodo Lüngen Development and plants of Midrex, HyL and Circored / Other developments without importance or realization
- 09:45 questions and answers
- 10:00 Thermodynamics and kinetic fundamentals of hydrogen-based reduction Karl-Hermann Tacke Phases, reactions, equilibria / Kinetic effects: temperature, ore, particle size, porosity, gas properties and other parameters / Morphology
- 11:00 questions and answers
- 11:15 Injection of carbon-hydrogen carriers into the blast furnace Peter Schmöle

Use of different auxiliary reducing agents / Hydrogen input with hot blast, coke and auxiliary reducing agents / Effects on blast furnace operations (Raceway adiabatic flame temperature, oxygen addition, reduction rates by C and H₂, top gas composition)

- 12:00 questions and answers
- 12:15 Iron ores for direct reduction Rénard Chaigneau Pellets are the natural choice for conventional DR. Also for efficient hydrogen-based reduction?
- 13:00 questions and answers, afterwards end of 1st day

Wednesday, 7th of October 2020

Chapter "H₂-Processes / Applications"

- 8:30 Hydrogen its production and importance for the economic sector Ilona Dickschas Principles of hydrogen electrolysis / P2X and sector coupling / Overview of references and projects
- 09:00 Hydrogen-based direct reduction with Midrex Christian Böhm Process Diagram / Core Equipment / Options for hydrogen enrichment / Process limitations
- 09:45 questions and answers
- 10:00 Hydrogen-based direct reduction with HyL/Energiron Markus Dorndorf ENERGIRON-ZR process / Principles of design / Process schemes/ CO₂ removal unit / High-C DRI – link to EAF process / Final products (DRI, HBI, Hot Metal) / Hydrogen utilization in ENERGIRON process
- 10:45 questions and answers
- 11:00 Hydrogen-based direct reduction with Circored Tobias Stefan Basic principles of fluidized beds / Sticking in fluidized bed based direct reduction / Process Principles Circored / History Circored plant Trinidad / Process options for ultrafines
- 11:45 questions and answers
- 12:00 Hydrogen-based direct reduction for iron ore fines Johannes Schenk FINORED and "Breakthrough Technology" / Status of technologies / Flowsheets / Principles of the design / Raw materials / Products / Further use of products / Reductants / Limits of the process
- 12:45 questions and answers
- 13:00 end of seminar

SPEAKERS Christian Böhm, Primetals Technologies Austria GmbH, Linz
Dr. ir. Rénard Chaigneau, Baffinland Iron Mines Europe
B.V., Amsterdam
Ilona Dickschas, Siemens AG, Gas and Power, Hydrogen Solutions, Erlangen
Dr.-Ing. Markus Dorndorf, LOI
Thermprocess GmbH, Essen
Dr.-Ing. Hans Bodo Lüngen, Steel Institute VDEh, Düsseldorf
Prof. Dr.-Ing. Peter Schmöle, Dortmund
Prof. Dr.-Ing. Karl-Hermann Tacke, Technical University of Berlin
Prof. Dr.-Ing. Johannes Schenk, Montanuniversität Leoben
Dipl.Ing. Tobias Stefan, Outotec GmbH & Co KG, Köln
Organization: Peter Schmieding, Steel Academy, Steel Institute VDEh, Düsseldorf